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Abstract-The exact, nonlinear extensional theory of a rigid perfectly plastic arch is used to
determine the complete load-deflection behavior of a clamped semicircular arch under the
action of a vertical upward point load at the crown. A rate formulation of the problem is dis­
cussed. Solution of the rate problem at the yield-point state provides the basis for the construc­
tion of exact solutions for thin and for thick arches. Numerical results are presented in graphical
form. These results consist of load-deflection curves for three thin arches and one thick arch.
The plots together with formulas presented herein show that the slope of the load-deflection
curve at the yield-point state is nonzero and positive for upward loading. This result deviates
from the zero slope predicted by the usual methods of limit analysis in which geometry changes
are neglected.

a
e
H
K
I
M
Mo
m
N
No
II

P
Py,Pfp,Pulr

PL

So, s
t
u
z.\ W
x,y
IX

NOTATION
radius of centroidal circle of undeformed arch
rate of extensional strain of the centroidal line
one half the depth of arch cross section
('\/i + 1) + ('\/i - 1)/0(
length of plastically deformed region of zero curvature
internal bending moment on a cross section of the arch
yield moment of cross section of the arch
MIMo
internal normal force on a cross section of the arch
normal yield force of the cross section of the arch
NINo
vertical point load applied at crown
values of P: at yield point state, when arch first becomes fully plastic, and the ultimate load,
respectively
4(v'i + l)Mola, the yield load for an inextensional arch
arc length measured along the underformed and deformed centroidal lines respectively
time
component of displacement at load point in the direction of P
tangential and normal components of velocity
rectangular coordinates of a point on the deformed centroidal line
Hla, depth ratio
8<1> /8<1>
8M 8N
angular position of a plastic hinge at the yield-point state
subtending angle of an undeformed segment of arch
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curvature of centroidal line
non-negative multiplier appearing in mathematical statement of flow rule
angle of inclination of tangent to centroidal line
yield function
rotation of a plastic hinge.
Superposed dot indicates partial derivative of a function with respect to time with So held con­
stant. Square brackets denote the difference in the values of a function just ahead and just
behind a point of discontinuity in the function, U] = r·· 1-.
The 6 symbol denotes the difference between corresponding quantities in two solutions of the
rate equations.
61 11'- /, where 12 and I, are solution functions.

INTRODUCTION

When geometry changes are taken into account it is found that in general the post-yield
quasi-static deformation of a plastic structure must take place under increasing or decreasing
load rather than under constant load as predicted by the methods of limit analysis in
which geometry changes are neglected. Thus, the analysis of post-yield deformations is of
interest to the engineer concerned with the reserve strength of structures such as arches
which may undergo significantly large deformations.

The main features of a general approach to the analysis of the quasi-static finite deforma­
tion of a plastic solid have been described by Onat[l]. The method consists in formulating
the analysis as a boundary-value problem in terms of rates of deformation and rates of
stress with respect to the current configuration and state of stress. Knowing the rates (i.e.
rates of stress and deformation and the corresponding velocity field) at time t one can
determine the mechanical state of the solid a short time later. By repeated formulation and
solution ofthe rate problem one can determine numerically the load-deformation history in a
step-by-step fashion. Criteria for uniqueness of the solution of the rate problem and for the
stability of equilibrium, and an application of the theory to the analysis of the yield-point
state of a rigid-plastic inextensional arch have been given by Onate!]. The step-by-step
method of solution is not always necessary. Onat and Shu[2] were able to construct the
complete load-deformation history of a rigid-plastic inextensional arch with large deflections
on the basis of information obtained by solving the rate problem at the yield-point state.
Because the effect of axial force on the plastic behavior of the arch was neglected their
analysis predicts an unrealistic, asymptotic load-deflection relation at large values of the load.

A formulation of the rate problem for the analysis of the quasi-static extensional finite
deformation of an arch made of an elasto-plastic material has been given by DaDeppo[3].
The particular equations and the results of an analysis for the case of an arch composed of a
rigid-plastic material are presented herein.

PROBLEM

The problem to be considered is the determination of the post-yield, quasi-static load­
deformation behavior of a uniform clamped semicircular arch under the action of a mono­
tonically increasing vertical concentrated force pet) applied at the crown as shown in Fig. I
for a thin arch at the yield-point state. The arch is assumed to have a symmetric sandwich
type cross-section of depth 2H (Fig. 2a). It is assumed that the facings develop all of the
resistance to the bending couple M and the axial force N, while the core provides the
required resistance to the shear force Q. The positive senses for the stress resultants M, N
and Q are as shown in Fig. 3. For the ideal sandwich section composed of a rigid perfectly
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Fig. 1. Arch at yield-point state.
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Fig. 2. Cross section and yield condition.
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plastic material the bending moment-axial force interaction curves for initial yield and for
the funy plastic states coincide (Fig. 2b). In this paper the rate of plastic strain is determined
by the plastic potential flow rule. With the bending moment and axial force as generalized
stresses, the corresponding generalized rates of strain are the rate of curvature and the
rate of extensional strain of the centroidal line which are denoted as K = a<p/as and e,
respectively. Herein, the rate of extensional strain is understood to be the time rate of
change of natural (logarithmic) strain.

The independent variables employed in describing the mechanical state of the arch are
arc length So (a material coordinate) measured along the undeformed centroidal line and
time. t. Arc lengths in the deformed state is

s=s(so.t). (1)

The mechanical state of the arch may also be described in terms of current arc length sand
time t. In this case equation (1) together with the identity t = t may be regarded as repre­
senting a coordinate transformation. To achieve compactness in the equations a superposed
dot is used to designate the partial derivative with respect to time of a function of So and t.
Thus if1 = I(so, t), then

J= dl = (Of) .
dt iit . '0

We note that if equation (1) is employed to express f in terms of sand t, then

. aj' ar
f=":'-s-+-' .

i"s . Dt

The natural strain is

(dS) (OSo)e=ln - = -In T
dso. (s

from which, by differentiation, one obtains

e= D,~ I~ = iJ,{

iJsol oSo

and

(2)

(3)

(4)~ (oso) = -e cSo .
dt os as

The angle of inclination of the tangent to the reference line in the deformed state with
respect to the y-axis (Fig. 3) is 4>(so. t). Thus. the curvature is

_ 04> iJ4> (Iso
K = =-- (5)oso os

from which we obtain

K= o<p + ~4> (C~o). (6)
as ('So os

o<p. . h' I' h ~By using the notation K = as and equatIon (4), one can rewnte t IS resu t m t e torm

t: = K - ii<:. (7)
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Let the yield condition be expressed in the general form

<l>(M, N) = C > 0

so that

,.f.. olD. olD.
'lJ=-M+-N.

oM oN

1021

(8)

(9)

Then, by the plastic potential flow law we may summarize the mechanical behavior of the
arch at any section as follows:

e= K = 0 when ID < C, and when ID = C and <t> < 0,

aID
K = Jl - when ID = C and Ii> = 0

iJM

00)

where Jl is a non-negative number. Equations (10) must be modified if the yield condition
has corners and the stress point (M, N) lies in a corner. The necessary modifications are
described in[4]. At an isolated plastic hinge the rate of curvature and rate of strain are
undefined. At such sections e and K in equations (10) are to be replaced by [v] and [</>],
respectively, where the bracket notation is used to indicate the difference in the values of the
bracketed quantity just ahead and just behind a hinge and vis the component of the velocity
tangential to the deformed centroidalline (Fig. 3). Thus, [v] = v+ - v-, [</>] = </> + - </>-, and

[v] = [</>] = 0 when <l> < C, and when ID = C and <t> < 0

o<l>
[v] = Jl oN'

• aID •
[¢] = Jl iJM when ID = C and <l> = O.

(lOa)

(11)

The deformed shape of the arch can be determined by geometrical means if cj>(so, r) and
s(so, t) are specified, since

ox oy
-a = sin cj>, - = cos cj>.
s as

Therefore, in view of equations (2) and (5) the problem of determining the quasi-static
deformations of the arch amounts to the determination of the field variables ¢(so, t),

s(so, t), M(so, t), N(so, t), and Q(so, t) such that the constitutive equations (l0) and/or
(lOa), the equations of equilibrium,

aN o¢
--Q-=OoS os

iJQ + N0cj> = 0
os os

aM
-+Q=Oas

(12)

and the boundary conditions are satisfied. Since the displacements at the supports must
vanish, two conditions are obtained by integration of equations (11).Thus,

l
SI

2a = 0 sin ¢ ds, (13)
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where Sl is the total length of the deformed reference line. Also, there can be no rotation at
the supports of the clamped arch. hence

<Pc + Jr. (l4)

US)

where <Pc-(<Pc-,) is the inclination (with respect to the y-axis) of the tangent to the centroidal
line at the section just behind (in front) of the left (right) support. Equilibrium at the load
point requires that

P + fN cos <P Q sin 4J] = 0
(iV sin <P + Q cos 4>J = O.

In deriving these equations the possibility of <P being discontinuous at the load point was
considered. If <P is continuous at the load point and if the deformation is symmetric then
for the semicircular arch <P = nIl at the load point and in this case \I 5) reduces to

P [Q] = 0, [NJ =0. (16)

The second of equations (16) states that the axial force is continuous at the load point.

RATE PROBLEM

An analysis which takes into account geometry changes shows that in general the post­
yield quasi-static deformation of a rigid perfectly plastic structure must proceed under
increasing or decreasing load rather than under constant load as predicted by the methods
of limit analysis in which geometry changes are neglected. Clearly, the relationship of rate
of loading to rate of deformation is of interest. especially at the yield-point state. The
relationship can be obtained by solving a boundary value problem which involves rates of
stress, rates of deformation and rate of loading. Onat[1] has explained how the solution of
the rate problem can be applied to the analysis of finite deformation by means of a step-by­
step numerical method. Onat[l] has abo pointed out that by solving the rate problem at the
yield-point state one may determine which one of possibly several competing kinematically
admissible velocity fields is the incipient velocity field which characterizes the mode of
deformation from the yield-point state.

Equations governing rates for quasi-static deformation are obtained by partial differentia­
tion of the equations of equilibrium (12) with respect to time with So held constant. Thus, in
view of equation (2)

i¢ . Z<p
QT-Q-;;-=O

(s os

DQ D¢ . c<p
+N--+N-=O

(~S as as
oM .

+ Q.I- eQ = O.

(17)

At a section where a yield hinge forms, ¢ and b may be discontinuous and the rates just in
front and just behind the hinge must satisfy the relations

[NJ - [Q<,bl = 0
[Q] + [N<,b) = 0
[M] + [Qb) = O.
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Equations (18) were derived under the assumption that 4> is continuous at least until hinge
action begins. At the load point the second of equations (18) must be replaced by

[Q] + [N<P] -P =0. (19)

(20)

Equations (18) and (19) are obtained by considering, at t and at t + dt, the equilibrium of
an element of material that contains the section at which the yield hinge forms.

The rate of strain eand rate of rotation <P, expressed in terms of normal and tangential
components of velocity and the curvature (Fig. 3) are

ove= - - KWas
. ow

¢=-+KV.as
Equations (20) may be derived by considering the change in geometry, in time dt, of an
element of material whose deformed length at time t is ds and noting that the extension of
the element in time interval is edt. At the boundaries, because of the clamped supports,

<Pe- = ve- = We = 0, <Pe+ = ve+ = We = O. (21)

Finally, the rates of deformation must satisfy the constitutive equations (10).
In general the rate problem may have more than one solution, hence, the question of

uniqueness is of interest. A sufficient condition for uniqueness is established by following
Hill[5] and Onat[I]. First, we observe that each solution of the rate problem and the
difference between any two solutions must satisfy equations (17), (18), (20) and (21). In
addition, where ct> = C the solutions and their differences must satisfy the conditions

e= PK
at a section where <P is continuous, and at an isolated hinge

(22)

[v] = P[¢]
where

act>Iact>p = aM aN' and e K = [v] = [¢] = 0

(22a)

at all sections where ct> < C. For the piecewise linear yield condition shown in Fig. 2(b),
P= ± H. Now, multiply the first, second and third of equations (17) by v, wand ¢, res­
pectively, add, and integrate over the current length of the arch. Integrating by parts and
taking into account the equations of equilibrium (12) and (16), and equations (18-22)
yields, after some involved manipulations,

J{He + MK} ds +J{N¢2 - 2Qe¢} ds + r{M[¢] + N[v]} - rp[Q¢2] - PpP¢~ = Pu

(23)

where the integrals extend over the current length of the arch and the summations extend
over all plastic hinges. In equation (23). P is the prescribed rate of loading, ¢p is the rate of
rotation of the section at which P is applied, uis the component of velocity in the direction
of P, M and N are the stress rates at a plastically deforming hinge where ¢ is discon­
tinuous, and the brackets have the meaning given previously. We note here that ¢ was
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assumed to be continuous in deriving equation (23). Let AM, AN, A1>, etc. designate the
differences in corresponding quantities in two solutions of the rate problem. Then, by
repeating the calculations which led to equation (23), one obtains

J{AN Ae + AM AK} ds + J{N(A1»2 - 2Q Ae A1>} ds + 2:{AM(A1>l + AN(Avlj

- 2:[J(Q(A1»2] [Jpp(A1>p)2 = AP Au. (24)

Since the rate of loading P is prescribed, AP = 0 and the right hand side of equation (24) is
zero. It can be shown by using equations (10) and (lOa) that AN Ae + AM AK ~ o.
AN[Avl + AM[A1>l ~ O. Therefore. if there are two distinct solutions of the rate problem
their difference must be such that

J {N(A1»2 - 2Q Ae A1>} ds - 2:[J(Q(A1»2] - [Jpp(A1>pf :S; O.

Suppose now that in a particular situation we can show that

(25)

(26)

for the differences associated with all distinct admissible velocity fields. Then, there is a
contradiction to inequality (25) and the assumption of more than one velocity field which
satisfies the rate equation is false. Therefore, inequality (26) is a sufficient condition for
uniqueness. It is worthy of note that inequality (26) does not involve stress rates.

FINITE DEFORMATION

The starting point of the analysis is the determination of the yield-point state. Then, the
solution of the corresponding rate problem determines the initial tangent to the load
deflection relation P = feu), where u is the component of displacement in the direction of P
at the load point. In general the step-by-step numerical procedure would be required to

construct the load-deformation relation. For the relatively simple problem considered
herein the solution of the rate problem at the yield-point state suggests a trial shape for the
equilibrium configuration at finite deformation. The true configuration is obtained by
adjustment of the parameters which define the trial configuration. Solution of the rate
problem at the yield-point state shows that thin arches and thick arches must be considered

separately. An arch is thin if the thickness ratio a Hla is in the range 0 :S; tJ. < 3 - 2./2.
For thick arches, 3 - 2Ji :S; a :S; J.

Thin arch, 0 :S; a < 3 - 2,/2
The methods of limit analysis show that the yield load p}' is given by

4No
PY=j(

where

Since M o = HNo the yield load can also be expressed in the form

4Mo (.J2 l)PLP =-= .
Y aKa aK

(27)
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where PL = 4(Ji + l)Mo/a is the yield load for an inextensiona1 arch. If IX = 0, IXK in

equation (27) must be replaced by Ji - 1. As indicated in Fig. 1, the yield condition is
satisfied at the load point, the quarter points, and the supports. The stress profile for the
yield-point state is shown in Fig. 4. Because of symmetry only points on the right half of the

m

-~--------t----\\------7"_n

Fig. 4. Stress profile for thin arch at yield-point state.

arch are identified on the stress profile. Equation (27) also defines the yield load for down­
ward loading. For a downward load the signs of all stress resultants are reversed.

The nondimensionalized bending moment and axial forces at A + and C- are

and at B

2
m = 1-­

K'

2J2
m=-l+-­K'

2
n=-,

K

2Ji
n=--·

K

No serious difficulties arise in solving the rate problem at the yield-point state; however,
some awkward and lengthy algebraic expressions do come up. For compactness we present
only the relation between the rate of load an.d the rate of displacement for symmetric
deformation with hinge action at A -, A +, B, B. c- and C+,

p _ 4J2[Ji - I + (J2 + l)tx 2
] Moil

- IX 3K 3 (l - IX) a2 •

By employing the definition of PL, we obtain. for the slope of the load-deflection curve at
the yield-point, the relation

(28)
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For an inextensional arch ex = 0 and equation (28) reduces to the result given by Onat[l].
Equation (28) shows that for the upward loading shown in Fig. I motion from the yield­
point state must take place under increasing load. For a downward point load, with
u positive down, dP/du at the yield-point is the negative of that given by equation (28).
Thus, for the downward load the equilibrium at the yield-point state is unstable.

An analysis paralleling that of Onat and Shu[2], in which second order derivatives are
examined, can be employed to determine the deformed configuration of the arch in the
neighborhood of the yield-point state with greater accuracy than results from solution of
the rate problem alone. We do not present an analysis here: we merely note that the analysis
shows that:

(1) The hinge at B (and B) splits into two hinges which travel with respect to the unde­
formed reference axis. The material between the two hinges is plastically bent and stretched.
The curvature of the deformed reference line between two moving hinges is zero and the
tangent to the deformed reference line is continuous at a traveling hinge.

(2) The hinges at the load point and at the supports remain stationary. The material
adjacent to these hinges is plastically stretched and bent to a curvature K= IIH.

The configuration near the yield-point state suggests a symmetric configuration at finite
deformation as shown in Fig. 5 for the right half of the arch. Segments of the arch between

Fig. 5. Thin arch at finite deformation.

A+' and A+, between Band B', and between C- and C-' have been plastically deformed
while the segments between A + and B and between B' and C- are undeformed. The yield
condition is satisfied at all points in the plastically deformed regions. The stress profile for
the right half of the arch is shown in Fig. 6. Figure 5, with 1= a(l + rx)(l/Jl + l/Jz) shows the
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m

-1-------1--------\\__---7--"

Fig. 6. Stress profile for thin arch at finite deformation.
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true configuration which was obtained by adjusting parameters in a more general trial
configuration. From the geometry shown in Fig. 5 and the expression for I we obtain the
geometric relations:

1= a(l + a)(~ -28),

(2 sin 8 + I ») cos(8 + l/!t) = 1,
aO - (I.

n
l/!t + l/!2 + 28 = 2"'

u = [2aO - (I.)sin 8 + l]sin(8 + l/!t) - aO - a).

(29)

(30)

(31)

(32)

(34)

(33)

(35)

From the equations of equilibrium and the yield condition we obtain

20c
NB = No,

(1 + (I.) - (1 - oc)cos ()

NB - MB = NoMo,

p = PLNB (J2 - 1) sin(l/!t + 8),
No 2(1.

where N B and M B are the moment and thrust in region B, B'.
Equations (29-35) are valid for 0 S 8 S n/4, and they define the post-yield load-deforma­

tion response up to the state for which 8 = O. It can be easily verified, as indicated by the
stress profile in Fig. 6, that nowhere is the yield condition violated. The velocity field and
stress rates defined by Fig. 5 in conjunction with equations (29-35) satisfy all of the rate
equations and the constitutive equations (10). With the aid of inequality (26) it has been
established that the solution is unique. We note here that the plastic deformation takes
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n;
place at A+', B-, B'+ and C-'. Also, it is noted that putting 8 =- in equations (29-35)

4
produces the known result for the yield-point state.

Points on the load-deflection curve are calculated as follows: choose () and then use
equations (29-33) and (35) to calculate I, !/Jl' !/Jz' u, NBand P, respectively.

The arch becomes fully plastic, i.e. the yield condition is satisfied everywhere as 8 decreases
to zero; however, the capacity of the arch to sustain still greater loads is not exhausted. The
geometry of the arch for 8 = 0 and the associated stress profile are shown in Figs. 7 and 8,
respectively.

Fig. 7. Configuration of fully plastic thin arch.

m

A~B~B~C-'
-<---------+-------"l~n

Fig. 8. Stress profile for fully plastic thin arch.

A solution for continuing finite deformation is obtained by assuming that the configuration
of the arch in the final stages of deformation is symmetric and as shown in Fig. 7. From
geometry, we obtain:
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(36)
n

t/J2 ="2 - t/Jl'

1= a(l - a) , (37)
cos t/Jl

u = a(l - Cl)[tan t/Jl 1]. (38)

With the assumption that the axial force in the straight portion of the arch remains at No,
we obtain from the yield condition and equilibrium

NB=No , M B 0 (39)

(.)2 - l)sin t/Jl
P=PL 2et . (40)

The yield condition is satisfied everywhere and the stress profile remains as shown in Fig. 8.
A velocity field and rates of stress which are compatible with the geometry of Fig. 7 and

which satisfy all of the equations of the associated rate problem are obtained by assuming
that the hinge action occurs at sections A +, Band B' with all other sections remaining rigid.
At B, the hinge action is a simple extension while at B' there is extension with hinge rotation.
The calculations show that the stress points A +, B, B' and C- lie in the corner of the
yield condition, i.e. not on a side at the corner. The rate problem does not have a unique
solution since more than one distribution of admissible plastic rates which satisfy all of the
rate equations can be constructed. It is believed that the solution can be shown to be unique
in a restricted sense if the distribution of the extensional plastic rates over segment B, B'
(Fig. 7) is disregarded in comparing competing velocity fields, i.e. if over B, B' we consider
two extensional plastic rate fields to be distinct only if

Je1 ds + [l\]B + [i'tlB' "* Je2 ds + [V2]B + [V2]B' .

Thick arch, 1> et ~ 3- 2.}2
At the yield-point state of a thick arch the yield condition is satisfied at the load point

and at symmetrically situated points which are located between the load point and the quarter
points as shown in Fig. 9. The stress profile for a thick arch at the yield-point state is shown
in Fig. 10. The methods of limit analysis show that the location of the hinge at B is given by

2 ret
sin y = ---Y-, (41)

]+a

f:

Fig. 9. Thick arch at yield-point state.

uss Vol. 10 No. 9-G
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and the yield load is

Using the relations

DONALD A. DADEPPO and ROBERT SCHMIDT

-f------t---4t----+-n

B

Fig. 10. Stress profile for thick arch at yield-point state.

H = ::I.a,

we can express Py in the form

J
-- M

Mo=HNo . and PL =4( 2+1)_°,
a

(42)

From the solution of the rate problem at the yield-point state, the initial slope of the load­
deflection curve is found to be

dP P (J'2 - 1)(1 - ::I.) PL
-=-= ->0.
du U 80:3

/ 2 a
(43)

Equations (27) and (42) and equations (28) and (43), respectively yield identical results

when the transition value of IX = 3 - 2J2 is used to evaluate Py and dP/du at the yield­
point state. Equation (42) gives the yield load for downward loading, and equation (43)
with a minus sign in front of the right hand side gives the slope of the load-deflection
relation for a downward load with u measured positive down. It is seen that for downward
loading the equilibrium at the yield-point is unstable. We observe from equation (43) that
dP/du tends to zero only in the limiting (and unimportant) case of a very thick arch for
which 0: = H/a -+ 1.

There are three stages to the post-yield plastic deformation of a thick arch. The second
and third stages are the same as the two stages for a thin arch. In the first stage of
deformation the hinges at B and Ii split into two pairs of traveling hinges while the hinge
at A remains stationary, and the configuration of the arch is as shown in Fig. II. Segment
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Fig. 11. Thick arch at first stage of finite
deformation.

m

~------+-__~_-r-n

Fig. 12. Stress profile for thick arch during first
stage of finite deformation.

A +', A + and segment B, B' are plastically deformed while segments A +. Band B', Care
rigid. The plastic deformation takes place at A +, at B-, and at B' +. With

1= a(l + a)ljI,

we obtain, from the geometry shown in Fig. 11,

. (1 - a) (Sin ljI)
sm82 = 1 +IX T '

u = -a(1 - IX)(l - cos ljI) + I cos 82 ,

(44)

(45)

(46)

(47)

(49)

(48)

From the equations of equilibrium and the yield condition we get

2a
NB= No.

(1 + IX) - (1 - IX)COS 81

NB-MB=MoNo

P = (fi - I)sin(ljI + 81) PLNB

2a No

in which N B and M B are the axial force and bending moment in the straight segment B, B'.
The stress profile (Fig. 12) shows that nowhere is the yield condition violated. Equations
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(44-49) with 01 :2: O2 define the load-deflection response. Initially, 01 > °2 , and 01 decreases
until 01 =°2 , at which time the first stage of plastic deformation is complete.

Equations (29-35) define the response in the second stage of deformation during which
()1 -+ 0 and the arch becomes fully plastic.

Equations (36-40) define the response in the last stage of deformation.

RESULTS AND CONCLUSIONS

Calculations were carried out for thick and thin arches. Load-deflection curves are
presented in Fig. 13. The curve a = 0 is the load-deflection curve for an inextensional arch;
it is identical to that obtained previously by Onat and Shu[2]. This curve is asymptotic to
the line

(
n2 )1.'2

U =a 4-1 - a.

For all arches the load and corresponding deflection at which the arch first becomes fully
plastic may be calculated from the relations

J2 - 1[ 4(1 - a)2]1/2P = 1-- -- PL ,
Ip 2a n2 1 + a

[
n2 (I a)2]1/2

u = a(l + a) - - -- - a(1 - a)
Ip 4 1 + a
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Fig. 13. Load-deflection curves, P/PL vs ula.



Finite extensional deformation of a rigid plastic arch

and the ultimate load is

J2-l
Pult = 2tX PL -

Numerical values for PJp' UJp and Pult are given in Table 1.

Table 1. Loads and deflections

IX Py!PL PfP!PL ufp!a P.It!PL

0 1 00 0'211 00

0·025 0·873 6'59 0'306 8·28
0·050 0'774 3-38 0·398 4·14
0·250 0·414 0·76 1·815 0·83
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For the thick arch with IX = 0-25, the load and deflection at which hinge action is initiated at
the supports are P = 0-5l8PL and u = 0-275a, respectively. To avoid, misinterpretation of
the numerical results we recall that

PL = 4(J2 + 1) M o = 4(J2 + l)tXNo
a

increases with increasing thickness ratio for constant No _Therefore, for arches with IX =F 0,
the ultimate load, expressed in terms of No is PUll = 2No_In Fig. 14 the load-deflection
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"Fig. 14. Load-deflection curves, P!2No vs uta.
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curves are plotted with PJ2No vs uJa. The curves show that for a fixed amount of material
(as measured by No), the initial yield load and the load at any deflection up to approximately
u = 0'25a increases with increasing depth of arch.

In this study it has been assumed that the effect of shear on the yield load capacity of a
cross section of arch is negligible. However, in Ref. [6] it is shown that the effect of shear on
the load carrying capacity of a simply supported beam is negligible for depth-to-span ratio
less than about one-fifth, which, for a semicircular arch, corresponds to a value of IX 0'3.
From this we conclude that the results presented herein should be sufficiently accurate for
applications to thin and to moderately thick arches, with an upper limit of Ct. = 0'3. For
IX > 0'3 (very thick arch), the combined effects of shear, moment and thrust must be taken
into account.
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A6cTpaKT - fIpHMeH51eTCSI TO'lHa51, HeJIHHeIDIaSI reoPHlI YAJIHHeHHSI AM xeCTKOH, HlJ,eaJIbHO
IIJIaCTWlHOH apKH, C ueJIblO OIIpe,AeJleHHSI IIOJlHOrO nOBe,neHHSI Harpy3KH H nporH6a XecTKOH,
nOJIyKpyrJlOH apKH, IIO,LJ; BJlHlIHHeM BepTHKaJIbHoll:, Hal1paBJIeHHoll: BBepx Harpy3KH B KJIIO'le.
06CYXAaeTCSI $OPMYJlHpOBKa CKOpOCTH ,nJISI :lTOll: 3a,na'lH. PeIUeHHe 3l1JJ.a'lH CKOpOCTH ,llJIll
COCTOllHHll TO'lKH TeKY'iecTH S1BJIlleTC51 OCHOBHOH ,llJUI 110CTpoeHHll TO'lHbIX peIUeHHll: ,llJlll
TOHKHX H TOJlCTbIX apOK. ,LJ;alOTcll 'lHCJleHHble pe3YJIbTaTbI B rpa$H'lecKoll: $opMe. 3TH
pe3YJlbTaTbl 3aKJlIO'laIOT KpHBble ,LJ;JlSl 3aBHCHMOCTH HarpY3Ka-nporH6, ,nJlll Tpex TOHKHX apOK If

OAHOH TOJlCTOH apKH. rpa$HKH, BMeCTe C rrpe,nCTaSJIeHHbIMH 3,lleCb $OPMYJIaMH, YKa3b1BalOT
HeHYJIeBbIll: H nOJIO:lKHTeJIbHbIH: HaKJIOH KpHBOll: HarpY3Ka-l1porH6, ,LlJISI COCTOSlHHSI TOliKH
TeKy'leCTH, IIpH Harpy3Ke HarrpaBJIeHHOH BBepx. 3TOT pe3YJlbTaT OTKJIOHSleTCSI OT HyJIeBOrO
HaKJIOHa, rrpe,LlCKa3aHHoro 06blKHOBeI1HbIMH MeTO,LlaMH aHaJIH3a rrpe,neJIbHOrO COCTOllHHSI, B
KOTOpbIX rrpeHe6peralOTCll H3MeHeHHllMH reOMeTpHH.


